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On the origin of the dichotomy of stellar activity cycles
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ABSTRACT

The presence of possible correlations between stellar rotation rate Ω and the frequency of the activity

cycle ωcyc is still much debated. We implement a new Bayesian classification algorithm based on a

simultaneous regression analysis of multiple scaling laws and we demonstrate the existence of two

different scalings in the log10 ωcyc – log10 Ω plane for an extended Mt. Wilson sample of 67 stars.

Thanks to metallicity measurements obtained from both ESA Gaia and high-resolution spectroscopy,

we argue that the origin of this dichotomy is likely related to the chemical composition: stars whose

magnetic cycle frequency increases with rotation rate are less metallic than stars whose magnetic cycle

frequency decreases with stellar rotation rates. On the contrary, no clear difference in chromospheric

magnetic activity indicators characterizes the two branches.

Keywords: stars: activity — methods: statistical — miscellaneous — catalogs — surveys

1. INTRODUCTION

Despite the enormous progress made in recent years

in the observations of stellar magnetism, its origin and

generation are still not completely understood. It is be-

lieved that the large-scale magnetic field observed in cool

dwarfs can be explained by the idea of “cyclonic” tur-

bulence (Parker 1955): in a nutshell, a toroidal field

produced from a poloidal one by the shear (Ω-effect)

present in a stellar convection zone further decays in he-

lical turbulence which (α-effect) can then reinforce the

dipole field (Steenbeck et al. 1966). The magnetic field

produced by the αΩ dynamo mechanism is in general

non-stationary and its late-time behavior is character-

ized by a power-law of the type

ωcyc ∝ Ων (1)

where ωcyc ≡ 2π/Pcyc is the rate of the activity cycle,

Ω ≡ 2π/Prot is the rotation rate, and ν a scaling ex-

ponent. During the unstable phase, assuming Ω ∝ Ω′`,

Ω′ being the shear and ` the characteristic scale of the

turbulence, it turns out that ν = 1/2 (Stix 1976), while

in the opposite limit, in the saturated phase, the cycle

period is fixed by the characteristic turbulent diffusive

time scale and ν = 0. For this reason it is reasonable to

expect that in general ν will lay between these two lim-

its, at least according to kinematic dynamo theory. At

the non-linear level this picture can drastically change

and it is not clear if a simple scaling law like Eq. (1)

holds at all (Warnecke 2018; Guerrero et al. 2019; Pipin

2021).

Pioneering observational studies devoted to find pos-

sible correlation between ωcyc and Ω mostly agreed

on ν ≈ 1 (Wilson 1978; Noyes et al. 1984; Baliunas

et al. 1996) albeit the presence of multiple scaling laws

(branches) has further complicated the discussion (Saar

& Brandenburg 1999; Saar 2002; Böhm-Vitense 2007;

Hall et al. 2009; Metcalfe et al. 2016 but see also Brun

& Browning 2017 for an extended review).

Stars can be classified in active or non-active accord-

ing to the offset of two nearly identical scaling laws in the

log10(ωcyc/Ω) – log10R
′

HK plane, the so-called RCRA

(Ratio of Cycle over Rotation versus Activity) diagram.

This classification plays a fundamental role in the anal-

ysis of stellar activity cycles because it determines the

existence of possible correlations in the Pcyc – Prot plane

(Boro Saikia et al. 2018).

Note that this has nothing to do with the exis-

tence of the Vaughan-Preston gap (Vaughan & Preston

1980), a mild depletion in the number of stars around

log10R
′

HK = −4.75 caused by the weak bimodality of

the distribution of log10R
′

HK in main-sequence stars

(Gomes da Silva et al. 2021).

The question has been further addressed in Olspert

et al. (2018) where a Gaussian classification algorithm

has been used to determine the presence of multiple pop-

ulations in the RCRA diagram. The problem with a

direct clustering analysis in the RCRA diagram is the

existence of possible correlations between ωcyc and Ω

that would render the interpretation of the results am-

biguous.
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In this work we follow a different route. In Sect. 3 we

search for scaling laws of the type given by Eq. (1) in the

log10 ωcyc – log10 Ω plane by considering randomly dis-

tributed couples of lines in this plane. We thus employ a

Bayesian classification algorithm based on a generalized

likelihood describing a Gaussian mixture of two popula-

tions, so that the existence of branches is determined by

the distance from the lines in this plane and not by the

cluster center as in the approach followed by Olspert

et al. (2018). We think that in the search for possi-

ble correlations between Pcyc and Prot the log10 ωcyc –

log10 Ω plane has some advantages compared with the

Pcyc – Prot plane used by some authors (e.g. Böhm-

Vitense 2007; Metcalfe et al. 2016; Boro Saikia et al.

2018) because it allows for a direct probe of a large

class of power law dependencies as the one of Eq. (1).

Nonetheless, the data could be better reproduced by

more complicated non-linear laws: one has to keep in

mind that Eq. (1) is only a suggestion inspired by kine-

matic dynamo theory.

We present the data sample in Sect. 2 and the data

analysis in Sect. 3. We show our results in Sect. 4 and

discuss them in the light of available stellar properties in

Sect. 5. Finally, we draw our conclusions on the origin

of the two populations in Sect. 6.

2. OBSERVATIONS & DATA

The analysis proposed in this work is based on mea-

surements of rotation period, Prot and magnetic activity

cycle period, Pcyc that were published by Boro Saikia

et al. (2018) (here after B18) and Olspert et al. (2018)

(hereafter O18). The adopted cycle periods are obtained

from choromoshperic Ca H & K measurements and are

therefore excluding fast rotators, which are typically

very young objects (e.g. Oláh et al. 2016; Lehtinen et al.

2016; Distefano et al. 2017). The catalogs by B18 and

O18 contain a substantial intersection of stars, for which

multiple measurements are thus available. We therefore

compiled the largest catalog of activity cycle measure-

ments available to date 67 stars, including the Sun),

by taking into account all stars in common between B18

and O18 (31 in total, including the Sun), as well as stars

that belong to B18 only (14 stars) and to O18 only (22

stars). While for stars that are not common between

the two catalogs the merging procedure is straightfor-

ward because only one set of measurements is avail-

able, for the stars falling in the intersection we applied

the procedure described in the following. O18 provides

three estimates of Pcyc, one based on a periodic model

(Pcyc,P), one on a harmonic model (Pcyc,H), and another

one on a quasi-periodic model (Pcyc,QP). When possi-

ble we privilege the estimates obtained by means of a

quasi-periodic model because i) it is the most commonly

available and ii) it provides a more accurate fit to the

time-series thanks to its higher complexity. For obtain-

ing the final estimates of Pcyc we computed a weighted

mean between the estimates from O18 and those from

B18, i.e. taking into account the uncertainty in Pcyc,

except for the stars that we discuss below. HD 100180

has no Pcyc measurements from O18 so we considered

the one from B18. HD 101501 was removed because

the Pcyc measurements between the two catalogs devi-

ate by more than 30 %. HD 149661 has only Pcyc,P from

O18, while B18 provides two different estimates. Here

we considered as a final Pcyc the weighted mean between

O18 and the estimate from B18 that is closer to that of

O18. HD 156026 has Pcyc,H and Pcyc,P from O18 that

are almost identical, and an estimate from B18 that is

also very close. We considered the weighted mean be-

tween Pcyc,P and the value from B18 as a final estimate.

HD 155886 has Pcyc,H and Pcyc,QP from O18, and an

estimate from B18, which are all substantially differ-

ent from one another. We removed this star to avoid

ambiguities. HD 1835 and HD 20630 have no Pcyc mea-

surement from O18 and they have each two different

estimates from B18. We removed these targets to avoid

ambiguities. HD 190007 has Pcyc,P and Pcyc,QP from

O18 that are almost identical, while a substantially dif-

ferent one comes from B18. We considered Pcyc,QP from

O18 as the final one. HD 190406 has Pcyc,QP from O18

that is very close to one of the two estimates provided

by B18. For the final value, we computed the weighted

mean of the two. Despite HD 201092 has Pcyc,P from

O18, which is very close to the value provided by B18,

we discarded this star from our sample as its determina-

tion of the activity cycle period appears rather uncertain

due to the pronounced caothicity of its activity indica-

tors time-series (Hempelmann et al. 2006; Robrade et al.

2012). HD 76151 and HD 78366 both have only Pcyc,H

from O18 and an estimate from B18 that is very close.

The final estimate is taken as a weighted mean of the

two values. HD 82443 has Pcyc,P and Pcyc,QP from O18

that are not in agreement, and another value substan-

tially different from these two from B18. We removed

this target to avoid ambiguities. The final uncertainties

on Pcyc are computed following a standard error propa-

gation from those listed by the two catalogs.

In relation to Prot, to obtain a final estimate we com-

puted a simple arithmetic mean between the two catalog

estimates, except for the stars HD 26923 and HD 32147,

which were excluded from our final catalog because of

the pronounced disagreement between the two measure-

ments (> 30 %). Moreover, we computed values for

the chromospheric activity index log10R
′

HK by taking
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the arithmetic mean of the measurements available from

O18 and B18 for those stars that are in common. For

this parameter we find an excellent agreement (well

within 10 %) between the two catalogs.

By relying on a calibration of the Rossby number (Ro)

provided by Corsaro et al. (2021) using the (B − V )

color index, we find that our stellar sample has a mean

Ro = 0.523± 0.481. This shows that, albeit our catalog

comprises stars spanning from K to F spectral types

and from main sequence to early giants, their Rossby

number is on average close to that found in the Sun

(Ro� = 0.496), meaning that it is reasonable to study

the sample as a whole.

2.1. Stellar metallicity and Age

The period measurements were complemented with

additional measurements of stellar metallicity and age

by cross-matching our compiled catalog with the newest

available ESA Gaia (Gaia Collaboration et al. 2016)

DR3 catalog of additional astrophysical parameters from

the Apsis processisng chain (paramsup, Fouesneau et al.

2022), and with high-resolution spectroscopy measure-

ments.

The Gaia DR3 catalog provides metallicities [M/H]

from low-resolution spectra for 47 stars of our sample.

For the high-resolution measurements instead, we con-

sidred literature values from works exploiting a consis-

tent data analysis procedure, as obtained by Valenti &

Fischer (2005) (31 stars), Brewer et al. (2016) (20 stars),

Luck (2015) (6 stars), and Luck (2017) (39 stars). Mul-

tiple high-resolution [M/H] measurements for an indi-

vidual star, when available, are combined through an

arithmetic mean.

Stellar ages are obtained to large extent from the Gaia

DR3 catalog, which provides isochrone-based estimates

(related to BaSTI stellar evolution models, Hidalgo et al.

2018) for 33 stars of our sample. For HD 146233 (18 Sco)

we replaced the Gaia DR3 estimate with an age based

on asteroseismology (Li et al. 2012). Additional mea-

surements are taken from the StarHorse Gaia EDR3

catalog of astrophysical parameters (Anders et al. 2022).

In this catalog we found ages for the stars HD 152391,

HD 166620, HD 219834A, HD 219834B, HD 26913,

HD 21749, HD 154577, HD 75332, HD 88373, which

were instead missing in the Apsis Gaia DR3 catalog.

We complete our set of ages by including measurements

for the Sun (Bonanno & Fröhlich 2015), and the well

known stars HD 124897 (Arcturus, Ramı́rez & Allende

Prieto 2011) and HD 201091 (61 Cyg A, Kervella et al.

2008), thus leading to a total of 45 stars having an age

estimate. All of the collected characteristics for the en-

semble is provided in Table 1 in a machine-readable for-

mat.

3. BAYESIAN ANALYSIS

3.1. Models

As originally presented by Saar & Brandenburg (1999)

and then further discussed by e.g. Brandenburg et al.

(2017) (see also O18), the magnetic activity cycles are

distributed along two potentially different regimes that

have been termed active and inactive branches. In this

work we focus on the observable quantities ωcyc and Ω,

and following Eq. (1) we assume that these two observ-

ables are related by a simple power-law relation of the

type

ωcyc = βΩν . (2)

We therefore set our analysis in the plane log10 ωcyc –

log10 Ω plane, hereafter OCOR (Omega Cycle versus

Omega Rotation) plane for simplicity, where the power-

law relation can be linearized. Following the literature,

at first place we consider two regimes that can be mod-

eled through the presence of two simultaneous linear re-

lations of the type

log10 ωcyc = ν1 log10 Ω + log10 β1 (3)

and

log10 ωcyc = ν2 log10 Ω + log10 β2 , (4)

which we term model M1. In the second case we con-

sider

log10 ωcyc = ν0 log10 Ω + log10 β0 (5)

which we term model M2. This second model has the

purpose of allowing us to verify whether a single power

law, hence a single regime in the evolution of the mag-

netic activity cycle, ought to be preferred over two sep-

arate ones.

In all cases here presented, the coefficients (νi, βi) for

i = 0, 1, 2, will be estimated through a statistical infer-

ence (see Sect. 3.2 for details). Besides, a model compar-

ison process will allow us to draw conclusions on whether

one or two regimes ought to be preferred in the light of

the existing data (Sect. 3.3).

3.2. Likelihood

For the simultaneous fitting of two regimes as pre-

sented through modelM1 we do not perform an a priori

division of the data sample in two parts, which would

otherwise result in imposing a somewhat arbitrary cut.

We instead automatically identify the presence of any

internal partition by means of a purely statistical ap-

proach. For this purpose we consider a Gaussian mix-

ture likelihood, consisting of two components of the type
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Table 1. Metadata for Compiled catalog

Unit Label Description

— Name Star Name, HD catalog or Sun

— DR3 Gaia DR3 identifier

d Prot Rotational period, days

yr Pcyc Activity cycle, years

yr e Pcyc Standard deviation of Pcyc

dex [M/H]-LR Gaia DR3 low-resolution-based metallicity

dex [M/H]-HR High-resolution (literature) metallicity

dex [M/H] Final metallicity

Gyr Age Age, Gigayears

dex logRHK chromospheric activity index, log10R
′
HK

M� Mstar Mass of star

dex logg log, surface gravity, log g

L� Lstar Luminosity of star

mag B-V B-V color

d tau Convective turnover time from Corsaro et al. 2021, days

y(1) = ν1x + log10 β1, y(2) = ν2x + log10 β2, with ν1, ν2
the two line slopes, and log10 β1, log10 β2 the two line

offsets. The corresponding likelihood can be expressed

as

L (θ) =

N∏
i=1

[Ai (θ) +Bi (θ)] , (6)

where

Ai (θ) =
sin2 ψ√

2πσi
exp

[
− (yi − ν1xi − log10 β1)

2

2σ2
i

]
(7)

and

Bi (θ) =
cos2 ψ√

2πσi
exp

[
− (yi − ν2xi − log10 β2)

2

2σ2
i

]
(8)

are the two components of the Gaussian mixture, with

θ = (ν1, β1, ν2, β2, ψ) the parameter vector containing

the free parameters that need to be fitted, and σi the

uncertainties on the dependent variable yi. We therefore

have to estimate five free parameters in the case of two

simultaneous regimes, ψ being the parameter that con-

trols the relative weight of each of the two components

of the mixture. In the way we presented the models,

we further assume that the measurements ωcyc are log-

normally distributed (e.g. see Corsaro et al. 2013; Bo-

nanno et al. 2014). This is because the residuals arising

from the difference between the observed and predicted

logarithms of the activity cycle rate are assumed to be

Gaussian distributed.

For avoiding numerical overflows, which may arise

from the exponential term in the likelihood, we switch

to the log-likelihood and rely on the identity

ln(A+B) = ln [exp (lnA− lnB) + 1] + lnB . (9)

Therefore, we compute each term i using two different

expressions. By defining the quantity

∆ij ≡ −
1

2σ2
i

[
yi − y(j)i

]2
(10)

we obtain for ∆i1 ≥ ∆i2 ,

Λ
(a)
i (θ) = ln

(
sin2 ψ√

2πσi

)
+ ∆i1+

ln
[
1 + cot2 ψ exp (∆i2 −∆i1)

]
,

(11)

and vice versa for ∆i1 < ∆i2

Λ
(b)
i (θ) = ln

(
cos2 ψ√

2πσi

)
+ ∆i2+

ln
[
1 + tan2 ψ exp (∆i1 −∆i2)

]
.

(12)

In this way we can compute a final log-likelihood as

Λ (θ) =

N∑
i=1

Λ
(a,b)
i (θ) , (13)

where Λ(a,b) can be either Λ(a) or Λ(b) depending on the

conditions defined above.

For treating the case of modelM2, consisting of a sin-

gle linear relation, we instead rely on a standard Gaus-

sian likelihood. We note that the Gaussian mixture

likelihood here presented and often adopted in Bayesian
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cluster analysis is a more generalized form of the stan-

dard Gaussian likelihood. The two likelihood functions

become identical by imposing ψ = 0 or π/2, i.e. by

assuming that the sample is not internally split in two

separate subsets.

3.3. Bayesian inference and model comparison

By means of the log-likelihood function presented in

Sect. 3.2, we perform a Bayesian inference by adopting

uniform prior distributions for each free parameter in-

volved in the fitting process. We note that although the

free parameter ψ is not directly appearing in the model

equations, it is an important fitting parameter because it

controls how the data sample is clustered in the light of

the two components of the mixture. Given that ψ has to

satisfy the identity sin2 ψ+cos2 ψ = 1, we have adopted

a uniform prior in the range [0, π/2] to allow for all the

possible outcomes. We further point out that for con-

sidering more reliable uncertainties on ωcyc than those

provided in the literature — which are, in some cases,

unrealistically more precise than what can be obtained

for our Sun — we have inflated them for our analysis by

incorporating a systematic term due to the intrinsically

stochastic character of the dynamo mechanism (Mininni

et al. 2000). We can estimate this term by assuming it

is of the same order of the dispersion of the solar activ-

ity cycle period. For computing a reliable estimate, we

consider the longest available set of solar activity cycle

maxima, as obtained from sunspots time-series covering

a total of 18 different activity cycles (in the years from

1818 to 2014)1. The result yields σsys
Pcyc,�

= 0.24 yr.

To perform the Bayesian parameter estimation we

make use of the public tool Diamonds2 (Corsaro & De

Ridder 2014), which exploits a nested sampling Monte

Carlo algorithm (Skilling 2004). The results of our anal-

ysis are presented in Sect. 4. In addition to the param-

eter estimation problem we perform a Bayesian model

comparison through the odds ratio, which for two com-

peting models Mi and Mj is defined as

Oij =
Ei
Ej
π (Mi)

π (Mj)
. (14)

In our application, we can discard the term containing

the ratio of the model priors π (Mi), which we assume

to be the same for each of the models considered, so that

the odds ratio is entirely based on the evaluation of the

Bayesian evidences Ei. We refer to this odds ratio as the

Bayes factor, which we can express in logarithmic form

1 Data are taken from the SILSO data/image, Royal Observa-
tory of Belgium, Brussels, https://www.sidc.be/silso/ .

2 https://github.com/EnricoCorsaro/DIAMONDS

as lnBij = ln Ei − ln Ej . According to the Jeffreys’ scale

of strength (Trotta 2008), we are therefore able to un-

derstand whether a given model could be favored or not

against its competitor. The Bayesian evidences are com-

puted for the pair of models (M1,M2) and are provided

as a direct output of the computation by Diamonds.

We note that the evaluation of Eq. (14) is not based on

any approximation such as that of the Bayesian Informa-

tion Criterion, but on the full numerical calculation of

the Bayesian evidence as obtained by Diamonds from

the sampling of the multi-dimensional posterior proba-

bility distributions.

4. RESULTS

The output of the model comparison process yields

a clear preference for the model that incorporates two

different regimes in the OCOR plane, namely favor-

ing model M1 with lnB1,2 ' 2.6 · 104, largely be-

yond a strong evidence condition. The result of the

fit is shown in Fig. 1, while the estimates of the

free parameters of model M1 are ν1 = 0.109+0.005
−0.005,

log10 β1 = −2.417+0.004
−0.004, ν2 = −0.108+0.007

−0.008, log10 β2 =

−2.903+0.005
−0.005. We obtain a weight parameter ψ =

0.69+0.07
−0.06, showing that in the mixture both groups

are playing equally important roles (sin2 ψ ' 0.49).

We classify the stars in two groups according to their

relative difference in log10 ωcyc with respect to each line

of the fit and identify stars having a larger ωcyc as Group

1 (G1) stars, and stars having a lower ωcyc as Group 2

(G2) stars. The Sun clearly belongs to G2 as it is well

in line with the regime indicated by Eq. (4).

5. DISCUSSION

In order to understand the potential origin of the di-

chotomy shown in Fig. 1 we analyze it in relation to

the fundamental stellar properties of metallicity [M/H],

Age, and chromospheric activity index logR
′

HK for each

of the two groups identified.

In relation to metallicity, we find a significant cor-

relation (Pearson’s correlation coefficient ρ = 0.78) be-

tween the low-resolution values obtained from Gaia DR3

and the high-resolution ones, for the stars that are in

common (a total of 33). We therefore combine the two

sets by first shifting the zero point of the Gaia [M/H]

set to match that of the high-resolution [M/H] set (-

0.185 dex as obtained from a linear regression over the

two sets), and by subsequently computing an arithmetic

mean between the two. The final metallicity sample

therefore represents stars having both Gaia DR3 and

high-resolution measurements available. The presence

of an offset in the Gaia metallicities may have an im-

pact on the adopted stellar ages. We therefore caution
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Figure 1. Magnetic activity cycle rate ωcyc as a function
of the rotation rate Ω. The dashed and dot-dashed lines
represent the fits obtained from the double linear regression
(Eqs. 3 and 4, respectively). The symbol type represents
the group classification as stemming from the fits (circles
for Group 1 and squares for Group 2). Open symbols are
stars for which the color-coded measurement was not avail-
able. 1-σ uncertainties on ωcyc as well as the 3-σ credible
region of each fit are overlaid. The red arrow shows the
star HD 103095, having [M/H] ' −1.34, significantly lower
than the average metallicity of the sample. The available
measurements of [M/H], Age, and log10R

′
HK, are shown as

color-coded information in the top, middle, and bottom pan-
els, respectively. The Sun with its symbol is indicated and
included in G2, color-coded according to the corresponding
measurements.

the reader that this represents a potential limitation of

our work in relation to the interpretation of the age dis-

tributions.

To highlight any difference between Group 1 and 2

we additionally show their corresponding distributions

as a function of stellar properties in Fig. 2. We find

that the stars in G2 are about 40 % more metal rich

0.6 0.4 0.2 0.0 0.2 0.4
[M/H] (dex)

0

2

4

6
G1
G2

2 4 6 8 10 12
Age (Gyr)

0

2

4

6

Co
un

ts

5.0 4.8 4.6 4.4
log10R ′

HK (dex)

0

2

4

6

Figure 2. Distribution of metallicity [M/H], Age, and chro-

moshperic activity index log10R
′
HK from top to bottom for

the stars of Group 1 and 2 as identified in Sect. 4. The over-
laid vertical lines, having the same color as the histograms,
represent the corresponding median values for each group.
The metallicity range has been restricted to a range similar
to that adopted in Fig. 1 for clarity purposes.

than the stars in G1, with median metallicity values

[M/H]G1 ' −0.09 dex and [M/H]G2 ' +0.05 dex. Ac-

cording to a Kolmogorov-Smirnov test, the two metal-

licity distributions appear different to a p-value level of

0.015, close to the usual limit adopted for a strong de-

tection (which is set to 0.003). Interestingly, we find

that the stars in G2 are about 25 % older than those

in G1, having median values AgeG1 ' 2.8 Gyr and

AgeG2 ' 3.5 Gyr. Although the age difference between

the two groups cannot be considered statistically sig-
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nificant (the associated p-value of the two distributions

is 0.17), the trend appears in line with that found for

metallicity because stars with lower metallicity have a

reduced opacity, which leads to stronger radiative fluxes,

hence a faster evolution. For the sake of completeness,

we also performed a comparison with ages computed

from gyrochronology (Barnes 2007). Here we note that

while ages from gyrochronology are in agreement with

those from isochrones for G1 (where we obtain a median

gyro-age of 2.6 Gyr), there is a discrepancy for stars in

G2, with gyro-ages pointing to a median of 1.6 Gyr. Ac-

cording to gyrochronology, this would imply that stars

in G2 should rotate slower than observed to match the

isochrone ages. While the investigation of this difference

is beyond the scope of this work, we cannot exclude that

stars in G2 may be subject to a different gyrochronologi-

cal calibration than the one presented by Barnes (2007).

In relation to the activity index log10R
′

HK instead, we

find two rather similar median values, log10R
′

HK,G1 '
−4.75 dex and log10R

′

HK,G2 ' −4.69 dex. Here one

could in principle attempt to rely on an age-activity rela-

tionship such as the one proposed by Mamajek & Hillen-

brand (2008) to estimate an age difference between the

two groups from the choromspheric activity level alone.

However, we point out that according to a Kolmogorov-

Smirnov test the two distributions in log10R
′

HK are es-

sentially indistinguishable (p-value > 0.9). This implies

that the variance in chromospheric activity between G1

and G2 is just too small to be reliably used to infer

any dissimilarity in age. Besides, the general differences

identified by our computation of the median estimators

appear clearly visible in the distributions shown in Fig. 2

in relation to [M/H].

We note that we have also inspected available mea-

surements for mass, log g, and luminosity of the stars

belonging to G1 and G2, and found that while the me-

dian values for mass and log g of the two groups are very

similar, pointing to M ' 1M� and log g ' 4.44 dex,

there is a ∼ 14 % difference in luminosity (median val-

ues LG1 ' 0.87L� and LG2 ' 0.76L�). This not only

suggests that is the metallicity, and not the stellar mass,

that could be playing a role in the different dynamo

mechanism in action between the two groups, but also

that there is a qualitative agreement among the trends

observed in [M/H], Age, and luminosity.

6. CONCLUSIONS

In this study we have shown that stars can be classified

into two groups according to whether the period of the

activity cycle decreases or increases with rotation. In

both cases the simple scaling law represented in Eq. (1)

seems to hold for a wide range of rotations. Albeit the

average rotation rate of the two groups is nearly the

same, cycle periods for the group G1 are about a factor

two shorter than for the group G2. We suggest that this

dichotomy is likely originating from a different chemical

composition of the stars. Finally, we would like to stress

that the Sun does not occupy any special position in this

context.

Can these two scaling laws be understood in terms of

dynamo theory? As discussed in the introduction the

positive slope can be explained already in terms of sim-

ple kinematic dynamo theory. The negative slope does

not have this interpretation. However if we assume that

the dynamo in the Sun is ruled by the meridional circula-

tion at the bottom of the convection zone, then a higher

rotation rate would imply weaker meridional circulation

(by angular momentum conservation). This would pro-

duce a smaller cycle period because the cycle period is

determined by the strength of the meridional circulation

(Dikpati et al. 2001; Bonanno 2013). What is the role

of metallicity in this context? Stars with reduced metal-

licity have higher luminosity, therefore higher eddy dif-

fusivity, at least according to mixing-length theory. On

the contrary, a smaller luminosity implies a reduced dif-

fusivity and therefore a stronger Reynolds number of the

meridional circulation for this type of dynamo action.

We plan to further explore these arguments in detail

in a future work that will also exploit a larger set of

metallicity measurements as obtained by the soon to

come ESA PLATO mission (Rauer et al. 2014).
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Mininni, P. D., Gómez, D. O., & Mindlin, G. B. 2000,

PhRvL, 85, 5476

Noyes, R. W., Weiss, N. O., & Vaughan, A. H. 1984, ApJ,

287, 769
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